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1. INTRODUCTION

Let 1<g< o and (1/p)+(1/q)=1. By S, we denote the set of alter-
nating series, Y o, (—1)" a,, where a, = [ t"w(¢) dt and |ly|, < 1, and we
put s,=>7_, (—1)*a,. The elements of S, are convergent.

Let y,(=t)=7y,,(—t) denote the element of P, that minimizes
[ p(t) = (1 +£)~"{|,, when p(t) runs through P,, the set of all polynomials of
degree not exceeding n, and put

Bu() =B, (1) = (7,(0) = (1 = )y, ()t = F__ bt

Then the linear combination of the partial sums s,, §,,..., 5, which (with
regard to S,) gives the best approximation to the sum ) &  (—1)"a
given by Zk o b¥s, and

el == —(1+07",

gives the maximal error. (For details and the relation with known results on
the problem of accelerating the convergence of alternating series see [4].)
Jurkat and Shawyer |4] determined he error ¢'” and the matrix (b%%) for the
cases p = 2 and p = oo0. In the present note we shall calculate ¢! and (b'}).

The matrix (b}}) turns out to be a regular and positive triangular matrix,
whose entries are rational numbers. The error ¢ is greater than and
asymptotic to 44" +2 with A =3 — 8'/2 Since ¢’ is monotonic in p and since
e = A"/4 (see [4]), we obtain

A"9LeP A4 for n€EN and 1< p< .
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2. THE ERROR &

We have |y, (—0)—~ 1+ =]1 [ys(x—1)/2—(3—x)""|dx and
therefore

e = 1p)—(c~3)dx  and
Bra)) = 24(1 = 02,21 + 1) = p,(D}/1

where p,(x) denotes the element of P, which minimizes
fLilp(x)—(x—3)""|dx. Since this minimum is well known (see {2,
p. 290]) we obtain

et =2{log(1 + A"*%) —log(l — A"*2)} ~ 4A™+2,

3. THE MATRIX b}

According to a theorem of Markoff (see [2, p. 82]) p,(x) is that
polynomial of P, that interpolates (x — 3)~' at the (n + 1) zeros of U,,, ,(x),
where U, , (x) denotes the (n + 1)th Chebyshev polynomial of the second
kind. We deduce

(= 3)p0) = (= 3) Uy, () N {6 = x)00x, ~ 3) Uy (3)) "

J=0

= Un+l('x) i {(3 —-"7,')7l - (x_'xj)7l }/Ur,t+l(xr)

i~ 0

.

=1-U,,. \(x)/U,,,(3)
Using (see (27) on p. 186 and (3) on p. 174 of [3])

k+2
Uﬁ,'z,(1)=2k-kz(:+kil> for 0<k<n+1,

we obtain
Un+l(3)ﬂn.1(t) = {Un+l(2t + 1) - UnH(l)}/t
<= gk (n+k+3)tk

n—k

i~o
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and thus

ORI !

n—k

The b!Y are rational numbers, since the recurrence relation
U,,.(x)=2xU,(x)— U,_,(x) (see [1, p. 782]) implies that U,,,(3) is an
integer. By Toeplitz’s theorem (b'}) is a regular matrix, since

Up()=(n+2) and U, ,(3)=1{4-2"2. 4271 (%)

and therefore

N b =,,(1)= 1= U, ()/U,, (B)>1  for n=oo

=0

>

and
by -0 for k- oo and any fixed .

Using (*) and Stirling’s formula for n! we obtain (similarly to [4]) the
following asymptotic behaviour for the b_} :

If c=8' and §=2"2—13/8, then k=n-2">+Jd+h and |h| < n/4
imply

by = (c/nn)"? exp(—ch?/n)(1 + O(1/n + h*/n?)).
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