A Remark on Best Approximation of Alternating Series

H. FIEDLER AND W. B. JURKAT*

Abteilung für Mathematik der Universität, Oberer Eselsberg, D-7900 Ulm, Federal Republic of Germany

Communicated by G. G. Lorentz

Received March 28, 1981

1. INTRODUCTION

Let $1 \leq q < \infty$ and (1/p) + (1/q) = 1. By S_q we denote the set of alternating series, $\sum_{n=0}^{\infty} (-1)^n a_n$, where $a_n = \int_0^1 t^n \psi(t) dt$ and $\|\psi\|_q \leq 1$, and we put $s_n = \sum_{k=0}^n (-1)^k a_k$. The elements of S_q are convergent.

Let $\gamma_n(-t) = \gamma_{n,p}(-t)$ denote the element of P_n that minimizes $|| p(t) - (1+t)^{-1} ||_p$, when p(t) runs through P_n , the set of all polynomials of degree not exceeding n, and put

$$\beta_n(t) = \beta_{n,p}(t) = (\gamma_n(0) - (1-t)\gamma_n(t))/t = \sum_{k=0}^n b_{nk}^{(p)} t^k.$$

Then the linear combination of the partial sums $s_0, s_1, ..., s_n$ which (with regard to S_q) gives the best approximation to the sum $\sum_{n=0}^{\infty} (-1)^n a_n$ is given by $\sum_{k=0}^{n} b_{nk}^{(p)} s_k$ and

$$\varepsilon_n^{(p)} = \|\gamma_n(-t) - (1+t)^{-1}\|_p$$

gives the maximal error. (For details and the relation with known results on the problem of accelerating the convergence of alternating series see [4].) Jurkat and Shawyer [4] determined he error $\varepsilon_n^{(p)}$ and the matrix $(b_{nk}^{(p)})$ for the cases p = 2 and $p = \infty$. In the present note we shall calculate $\varepsilon_n^{(1)}$ and $(b_{nk}^{(1)})$.

The matrix $(b_{nk}^{(1)})$ turns out to be a regular and positive triangular matrix, whose entries are rational numbers. The error $\varepsilon_n^{(1)}$ is greater than and asymptotic to $4\lambda^{n+2}$ with $\lambda = 3 - 8^{1/2}$. Since $\varepsilon_n^{(p)}$ is monotonic in p and since $\varepsilon_n^{(\infty)} = \lambda^n/4$ (see [4]), we obtain

$$\lambda^n/9 \leq \varepsilon_n^{(p)} \leq \lambda^n/4$$
 for $n \in \mathbb{N}$ and $1 \leq p \leq \infty$.

* The research of the second author was supported in part by the National Science Foundation.

FIEDLER AND JURKAT

2. The Error $\varepsilon_n^{(1)}$

We have $\|\gamma_n(-t) - (1+t)^{-1}\|_1 = \int_{-1}^1 |\gamma_n(x-1)/2 - (3-x)^{-1}| dx$ and therefore

$$\varepsilon_n^{(1)} = \int_{-1}^{1} |p_n(x) - (x-3)^{-1}| dx$$
 and
 $\beta_{n,1}(t) = 2\{(1-t)p_n(2t+1) - p_n(1)\}/t,$

where $p_n(x)$ denotes the element of P_n which minimizes $\int_{-1}^{1} |p(x) - (x-3)^{-1}| dx$. Since this minimum is well known (see [2, p. 290]) we obtain

$$\varepsilon_n^{(1)} = 2\{\log(1+\lambda^{n+2}) - \log(1-\lambda^{n+2})\} \sim 4\lambda^{n+2}.$$

3. The Matrix $b_{nk}^{(1)}$

According to a theorem of Markoff (see [2, p. 82]) $p_n(x)$ is that polynomial of P_n that interpolates $(x-3)^{-1}$ at the (n+1) zeros of $U_{n+1}(x)$, where $U_{n+1}(x)$ denotes the (n+1)th Chebyshev polynomial of the second kind. We deduce

$$(x-3) p_n(x) = (x-3) U_{n+1}(x) \sum_{j=0}^n \{(x-x_j)(x_j-3) U'_{n+1}(x_j)\}^{-1}$$
$$= U_{n+1}(x) \sum_{j=0}^n \{(3-x_j)^{-1} - (x-x_j)^{-1}\} / U'_{n+1}(x_j)$$
$$= 1 - U_{n+1}(x) / U_{n+1}(3).$$

Using (see (27) on p. 186 and (3) on p. 174 of [3])

$$U_{n+1}^{(k)}(1) = 2^k \cdot k! \binom{n+k+2}{n-k+1} \quad \text{for} \quad 0 \le k \le n+1,$$

we obtain

$$U_{n+1}(3) \beta_{n,1}(t) = \{U_{n+1}(2t+1) - U_{n+1}(1)\}/t$$
$$= \sum_{k=0}^{n} 4^{k+1} \binom{n+k+3}{n-k} t^{k}$$

and thus

$$U_{n+1}(3) \cdot b_{nk}^{(1)} = 4^{k+1} \binom{n+k+3}{n-k}.$$

The $b_{nk}^{(1)}$ are rational numbers, since the recurrence relation $U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)$ (see [1, p. 782]) implies that $U_{n+1}(3)$ is an integer. By Toeplitz's theorem $(b_{nk}^{(1)})$ is a regular matrix, since

 $U_{n+1}(1) = (n+2)$ and $U_{n+1}(3) = \{4 \cdot 2^{1/2} \cdot \lambda^{(n+2)}\}^{-1}$ (*)

and therefore

$$\sum_{k=0}^{n} b_{nk}^{(1)} = \beta_{n,1}(1) = 1 - U_{n+1}(1)/U_{n+1}(3) \to 1 \quad \text{for} \quad n \to \infty$$

and

$$b_{nk}^{(1)} \to 0$$
 for $k \to \infty$ and any fixed n.

Using (*) and Stirling's formula for n! we obtain (similarly to [4]) the following asymptotic behaviour for the $b_{nk}^{(1)}$:

If $c = 8^{1/2}$ and $\delta = 2^{1/2} - 13/8$, then $k = n \cdot 2^{1/2} + \delta + h$ and $|h| \le n/4$ imply

$$b_{nk}^{(1)} = (c/\pi n)^{1/2} \exp(-ch^2/n)(1 + O(1/n + h^3/n^2)).$$

References

- 1. M. ABRAMOWITZ AND I. A. STEGUN (Eds.), "Handbook of Mathematical Functions," Dover, New York, 1965.
- 2. N. I. ACHIESER, "Theory of Approximation," Ungar, New York, 1956.
- 3. A. ERDÉLYI et al. (Eds.), "Higher Transcendental Functions," Vol. II, McGraw-Hill, New York, 1953.
- 4. W. B. JURKAT AND B. L. R. SHAWYER, Best approximations of alternating series, J. Approx. Theory 34 (1982), 397-422.