# A Remark on Best Approximation of Alternating Series 

H. Fiedler and W. B. Jurkat*<br>Abteilung für Mathematik der Universität, Oberer Eselsberg, D-7900 Ulm, Federal Republic of Germany

Communicated by G. G. Lorentz
Received March 28, 1981

## 1. Introduction

Let $1 \leqslant q<\infty$ and $(1 / p)+(1 / q)=1$. By $S_{q}$ we denote the set of alternating series, $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$, where $a_{n}=\int_{0}^{1} t^{n} \psi(t) d t$ and $\|\psi\|_{q} \leqslant 1$, and we put $s_{n}=\sum_{k=0}^{n}(-1)^{k} a_{k}$. The elements of $S_{q}$ are convergent.

Let $\gamma_{n}(-t)=\gamma_{n, p}(-t)$ denote the element of $P_{n}$ that minimizes $\left\|p(t)-(1+t)^{-1}\right\|_{p}$, when $p(t)$ runs through $P_{n}$, the set of all polynomials of degree not exceeding $n$, and put

$$
\beta_{n}(t)=\beta_{n, p}(t)=\left(\gamma_{n}(0)-(1-t) \gamma_{n}(t)\right) / t=\sum_{k=0}^{n} b_{n k}^{(p)} t^{k} .
$$

Then the linear combination of the partial sums $s_{0}, s_{1}, \ldots, s_{n}$ which (with regard to $S_{q}$ ) gives the best approximation to the sum $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ is given by $\sum_{k=0}^{n} b_{n k}^{(p)} s_{k}$ and

$$
\varepsilon_{n}^{(p)}=\left\|\gamma_{n}(-t)-(1+t)^{-1}\right\|_{p}
$$

gives the maximal error. (For details and the relation with known results on the problem of accelerating the convergence of alternating series see [4].) Jurkat and Shawyer [4] determined he error $\varepsilon_{n}^{(p)}$ and the matrix ( $b_{n k}^{(p)}$ ) for the cases $p=2$ and $p=\infty$. In the present note we shall calculate $\varepsilon_{n}^{(1)}$ and $\left(b_{n k}^{(1)}\right)$.

The matrix ( $b_{n k}^{(1)}$ ) turns out to be a regular and positive triangular matrix, whose entries are rational numbers. The error $\varepsilon_{n}^{(1)}$ is greater than and asymptotic to $4 \lambda^{n+2}$ with $\lambda=3-8^{1 / 2}$. Since $\varepsilon_{n}^{(p)}$ is monotonic in $p$ and since $\varepsilon_{n}^{(\infty)}=\lambda^{n} / 4$ (see [4]), we obtain

$$
\lambda^{n} / 9 \leqslant \varepsilon_{n}^{(p)} \leqslant \lambda^{n} / 4 \quad \text { for } \quad n \in \mathbb{N} \text { and } \quad 1 \leqslant p \leqslant \infty .
$$

[^0]
## 2. The Error $\varepsilon_{n}^{(1)}$

We have $\left\|\gamma_{n}(-t)-(1+t)^{-1}\right\|_{1}=\int_{-1}^{1}\left|\gamma_{n}(x-1) / 2-(3-x)^{-1}\right| d x$ and therefore

$$
\begin{aligned}
& \varepsilon_{n}^{(1)}=\int_{-1}^{1}\left|p_{n}(x)-(x-3)^{-1}\right| d x \quad \text { and } \\
& \beta_{n, 1}(t)=2\left\{(1-t) p_{n}(2 t+1)-p_{n}(1)\right\} / t
\end{aligned}
$$

where $p_{n}(x)$ denotes the element of $P_{n}$ which minimizes $\int_{-1}^{1}\left|p(x)-(x-3)^{-1}\right| d x$. Since this minimum is well known (see $[2$, p. 290]) we obtain

$$
\varepsilon_{n}^{(1)}=2\left\{\log \left(1+\lambda^{n+2}\right)-\log \left(1-\lambda^{n+2}\right)\right\} \sim 4 \lambda^{n+2} .
$$

## 3. The Matrix $b_{n k}^{(1)}$

According to a theorem of Markoff (see [2, p. 82]) $p_{n}(x)$ is that polynomial of $P_{n}$ that interpolates $(x-3)^{-1}$ at the $(n+1)$ zeros of $U_{n+1}(x)$, where $U_{n+1}(x)$ denotes the $(n+1)$ th Chebyshev polynomial of the second kind. We deduce

$$
\begin{aligned}
(x-3) p_{n}(x) & =(x-3) U_{n+1}(x) \sum_{j=0}^{n}\left\{\left(x-x_{j}\right)\left(x_{j}-3\right) U_{n+1}^{\prime}\left(x_{j}\right)\right\}^{-1} \\
& =U_{n+1}(x) \sum_{j=0}^{n}\left\{\left(3-x_{j}\right)^{-1}-\left(x-x_{j}\right)^{-1}\right\} / U_{n+1}^{\prime}\left(x_{j}\right) \\
& =1-U_{n+1}(x) / U_{n+1}(3)
\end{aligned}
$$

Using (see (27) on p. 186 and (3) on p. 174 of [3])

$$
U_{n+1}^{(k)}(1)=2^{k} \cdot k!\binom{n+k+2}{n-k+1} \quad \text { for } \quad 0 \leqslant k \leqslant n+1
$$

we obtain

$$
\begin{aligned}
U_{n+1}(3) \beta_{n, 1}(t) & =\left\{U_{n+1}(2 t+1)-U_{n+1}(1)\right\} / t \\
& =\sum_{k=0}^{n} 4^{k+1}\binom{n+k+3}{n-k} t^{k}
\end{aligned}
$$

and thus

$$
U_{n+1}(3) \cdot b_{n k}^{(1)}=4^{k+1}\binom{n+k+3}{n-k}
$$

The $b_{n k}^{(1)}$ are rational numbers, since the recurrence relation $U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x)$ (see $\left[1\right.$, p. 782]) implies that $U_{n+1}(3)$ is an integer. By Toeplitz's theorem ( $b_{n k}^{(1)}$ ) is a regular matrix, since

$$
\begin{equation*}
U_{n+1}(1)=(n+2) \quad \text { and } \quad U_{n+1}(3)=\left\{4 \cdot 2^{1 / 2} \cdot \lambda^{(n+2)}\right\}^{-1} \tag{*}
\end{equation*}
$$

and therefore

$$
\sum_{k=0}^{n} b_{n k}^{(1)}=\beta_{n, 1}(1)=1-U_{n+1}(1) / U_{n+1}(3) \rightarrow 1 \quad \text { for } n \rightarrow \infty
$$

and

$$
b_{n k}^{(1)} \rightarrow 0 \quad \text { for } \quad k \rightarrow \infty \text { and any fixed } n
$$

Using (*) and Stirling's formula for $n$ ! we obtain (similarly to [4]) the following asymptotic behaviour for the $b_{n k}^{(1)}$ :

If $c=8^{1 / 2}$ and $\delta=2^{1 / 2}-13 / 8$, then $k=n \cdot 2^{1 / 2}+\delta+h$ and $|h| \leqslant n / 4$ imply

$$
b_{n k}^{(1)}=(c / \pi n)^{1 / 2} \exp \left(-c h^{2} / n\right)\left(1+O\left(1 / n+h^{3} / n^{2}\right)\right)
$$

## References

1. M. Abramowitz and I. A. Stegun (Eds.), "Handbook of Mathematical Functions," Dover, New York, 1965.
2. N. I. Achieser. "Theory of Approximation," Ungar, New York, 1956.
3. A. Erdélyı et al. (Eds.), "Higher Transcendental Functions," Vol. II, McGraw-Hill, New York. 1953.
4. W. B. Jurkat and B. L. R. Shawyer. Best approximations of alternating series, J. Approx. Theory 34 (1982), 397-422.

[^0]:    * The research of the second author was supported in part by the National Science Foundation.

